Какие значения может принимать m в равенстве 2/(m+1)=3m?

§ 3. Алгебраические равенства. Формулы. ГДЗ по Алгебре 7 класс.  Колягин


5. Какие значения может принимать m в равенстве 2/(m+1)=3m?

Ответ

Чтобы найти значения переменной m в равенстве 2/(m+1) = 3m, мы можем решить данное уравнение.

Начнем с умножения обеих частей уравнения на (m + 1), чтобы избавиться от множителя в знаменателе:
2 = 3m(m + 1)

Раскроем скобки:
2 = 3m^2 + 3m

Теперь приведем данное уравнение к квадратному виду:
3m^2 + 3m — 2 = 0

Применим квадратное уравнение, чтобы найти значения переменной m. Можно использовать формулу дискриминанта:
D = b^2 — 4ac

где a = 3, b = 3, c = -2.

D = 3^2 — 4 * 3 * (-2) = 9 + 24 = 33.

Теперь найдем значения переменной m, используя формулы:
m1 = (-b + √D) / (2a)
m2 = (-b — √D) / (2a)

m1 = (-3 + √33) / (2 * 3) ≈ 0.2388
m2 = (-3 — √33) / (2 * 3) ≈ -1.5718

Таким образом, значения переменной m, которые удовлетворяют данному уравнению, примерно равны 0.2388 и -1.5718.


Понравилась статья? Поделиться с друзьями: